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1  Scope of the Chapter

This chapter is concerned with the generation of sequences of independent pseudo-random and quasi-
random numbers from various distributions, and the generation of pseudo-random time series from
specified time-series models.

2 Background to the Problems

A sequence of pseudo-random numbers is a sequence of numbers generated in some systematic way such
that its statistical properties are as close as possible to those of true random numbers: for example,
negligible correlation between consecutive numbers. The most common methods are based on the
multiplicative congruential algorithm, see Knuth (1981). The basic algorithm is defined as:

n; = (@ X n;_;) mod m (1)

The integers n, are then divided by m to give uniformly distributed pseudo-random numbers lying in the
interval (0,1).

Alternatively there is a variant known as the Wichmann—Hill algorithm, see Maclaren (1989), defined as:

ni; = (a; X ny;y) mod my

nli = (CLZ X nz’i_l) mod my

ny; = (a3 X nz; ;) mod my (2)
Ng; = (a4 X 714‘@,1) mod my

U = (m1 ottt m4) mod 1.0

This generates pseudo-random numbers U, uniformly distributed in the interval (0,1).

Either of these algorithms can be selected to generate uniformly distributed pseudo-random numbers. If
the basic algorithm (1) is selected then the NAG generator uses the values a = 13'* and m = 2% in (1).
This generator gives a cycle length (i.e., the number of random numbers before the sequence starts
repeating itself) of 2°7. A good rule of thumb is never to use more numbers than the square root of the
cycle length in any one experiment as the statistical properties are impaired. For closely related reasons,
breaking numbers down into their bit patterns and using individual bits may cause trouble.

If the Wichmann—Hill algorithm is selected then one or more of 273 independent generators are available.
Each of these is defined by the set of constants a; and m; for j=1,...,4. The constants a; are in the
range 112 to 127 and the constants m; are prime numbers in the range 16718909 to 16776971, which are

close to 2** = 16777216. These constants have been chosen so that they give good results with the
spectral test, see Knuth (1981) and Maclaren (1989). The period of each Wichmann—Hill generator would

be at least 2°% if it were not for common factors between (m; — 1), (my — 1), (m3 — 1) and (my — 1).
However, each generator should still have a period of at least 2% Further discussion of the properties of
these generators is given in Maclaren (1989) where it was shown that the generated pseudo-random
sequences are essentially independent of one another according to the spectral test.

The sequence given in (1) needs an initial value n,, known as the seed, while the sequence given in (2)
needs four such seeds. The use of the same seed will lead to the same sequence of numbers when these
are computed serially. One method of obtaining a seed is to use the real-time clock; this will give a non-
repeatable sequence. It is important to note that the statistical properties of the random numbers are only
guaranteed within sequences and not between sequences. Repeated initialization will thus render the
numbers obtained less rather than more independent. Similarly the statistical properties of the random
numbers are not guaranteed between two sequences generated using the two algorithms.

Random numbers from other distributions may be obtained from the uniform random numbers by the use
of transformations and rejection techniques, and for discrete distributions, by table based methods.
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(a) Transformation Methods

For a continuous random variable, if the cumulative distribution function (CDF) is F'(x) then for a
uniform (0,1) random variate u, y = F~'(u) will have CDF F(z). This method is only efficient in a
few simple cases such as the exponential distribution with mean y, in which case F~! (u) = —plogu.
Other transformations are based on the joint distribution of several random variables. In the bivariate
case, if v and w are random variates there may be a function g such that y = g(v, w) has the required
distribution; for example, the Student’s ¢-distribution with n degrees of freedom in which v has a
Normal distribution, w has a gamma distribution and g(v, w) = vy/n/w.

(b) Rejection Methods

Rejection techniques are based on the ability to easily generate random numbers from a distribution
(called the envelope) similar to the distribution required. The value from the envelope distribution is
then accepted as a random number from the required distribution with a certain probability; otherwise,
it is rejected and a new number is generated from the envelope distribution.

(c) Table Search Methods

For discrete distributions, if the cumulative probabilities, P, = Prob(z < ¢), are stored in a table then,
given u from a uniform (0,1) distribution, the table is searched for ¢ such that P,_; < v < P,. The
returned value ¢ will have the required distribution. The table searching can be made faster by means
of an index, see Ripley (1987). The effort required to set up the table and its index may be
considerable, but the methods are very efficient when many values are needed from the same
distribution.

In addition to random numbers from various distributions, random compound structures can be generated.
These include random time series, random matrices and random samples.

The efficiency of a simulation exercise may often be increased by the use of variance reduction methods
(see Morgan (1984)). It is also worth considering whether a simulation is the best approach to solving the
problem. For example, low-dimensional integrals are usually more efficiently calculated by routines in
Chapter DO1 rather than by Monte Carlo integration.

Quasi-random numbers are intended primarily for use in Monte Carlo integration. Like pseudo random
numbers they are uniformly distributed but they are not statistically independent, rather they are designed
to give a more even distribution in multidimensional space (uniformity). Therefore, they are often more
efficient than pseudo random numbers in multidimensional Monte Carlo methods. There are several quasi-
random generators, three of which are available in this chapter, they are the Sobol, Faure and Neiderreiter
generators.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Design of the Chapter

All the generation routines call — directly or indirectly — an internal generator (selected to be either the
basic generator (1) or a Wichmann—Hill generator (2)), which generates random numbers from a uniform
distribution over (0,1). However, there are two distinct sets of generation routines representing two distinct
methods for communicating the data representing the current state of a given generator. In the first set the
data is stored and passed internally, while in the second set the data is held in parameters that are passed
through the routine interfaces. It is recommended that the second set of routines are used.

3.1.1 Routines using internal communication

The first distinct set of generation routines are GOSCAF through to GOSHDF. These routines store and
pass information relating to generator states internally via COMMON blocks and saved variables. These
have the advantage of having a simpler interface since generator data does not have to be passed through
it. However, this advantage is achieved through the use of potentially thread-unsafe constructs that could
result in incorrect results when used within some multi-threaded applications. Note that, for this set of
routines a call to any generation routine will affect all subsequent random numbers produced by any other
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routine in the set. Despite this effect, the values will remain as independent as if the different sequences
were produced separately.

A utility routine is provided to select the internal generator for the set of routines GOSCAF to GOSHDF:

GO5ZAF allows you to select either the basic generator (1) or the Wichman—Hill generators (2). It is
recommended that the Wichman—Hill generators are selected since these have a longer cycle-
length. The basic generator should be used when you wish to reproduce results obtained from
code calling Chapter GO5 routines from previous releases of the Library.

Two utility routines are provided to initialize the generator:

GO5CBEF initializes it to a repeatable (when executed serially) state, dependent on an integer parameter:
two calls of GOSCBF with the same parameter-value will result in the same subsequent
sequences of random numbers (when both are generated serially). If GO5ZAF is used to select
the Wichmann—Hill generators, then GOSCBF selects one of the 273 possible generators as the
base generator depending on the seed used; the base generator number is computed as
mod(seed — 1,273) + 1.

GOS5CCEF initializes it to a non-repeatable state, in such a way that different calls of GOSCCEF, either in the
same run or different runs of the program, will almost certainly result in different subsequent
sequences of random numbers.

Two other utility routines, GOSCFF and GO5CGF, are provided to save or restore the state of the internal
generator (including the seed(s) of the multiplicative congruential method used by the generator). GO5CFF
and GOSCGF can be used to produce two or more sequences of numbers, where some are repeatable and
some are not; for example, this can be used to simulate signal and noise. As their overheads are not
negligible, numbers should be produced in batches when this technique is used. While they can be used to
save the state of the internal generator between jobs, the two arrays must be restored accurately. The
corresponding process between machines, while sometimes possible, is not advised. It also makes no
sense to save the state from one generator and restore it for the alternative generator.

3.1.2 Routines communicating through the interface

It is recommended that this set of routines are used for the generation of sequences of independent pseudo-
random numbers from various distributions, and the generation of pseudo-random time series from
specified time-series models.

The second distinct set of generator routines are GOSKAF through to GOSQDF. These routines pass
information relating to the generator and its current state through their interfaces using the parameters
IGEN and ISEED. These routines do not contain any thread-unsafe constructs, but they do have at least
two extra arguments in their interface.

Two utility routines are provided to initialize the generators:

GOS5SKBF selects and initializes a generator to a repeatable (when executed serially) state: two calls of
GO5SKBF with the same parameter-values will result in the same subsequent sequences of
random numbers (when both are generated serially). The basic generator or one of 273
Wichmann—Hill generators can be selected as the base generator.

GOS5SKCF selects and initializes a generator to a non-repeatable state, in such a way that different calls of
GO5KCEF, either in the same run or different runs of the program, will almost certainly result in
different subsequent sequences of random numbers.

Routines to save and restore generator states are not required for this set of routines since the ISEED
parameter can have its values copied and stored at any time.

3.1.3 Repeated intialisation

As mentioned in Section 2, it is important to note that the statistical properties of pseudo-random numbers
are only guaranteed within sequences and not between sequences produced by the same generator.
Repeated initialization will thus render the numbers obtained less rather than more independent. In a
simple case there should be only one call, for the first set of generator routines, to GOSCBF or GO5SCCF, or
for the second set of generator routines, one call to GOSKBF or GO5SKCEF; this call should be before any
call to an actual generation routine.
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3.2 Selection of Routine

The following distributions are available.

(@

(b)

©

(d)

(©

®

(2

Functions Returning a Single Random Variate

Real number from the continuous uniform distribution ...........c.cccceceeeeiiiiieiiieiiieeeeieeeecieeeens GO5KAF
Logical value .TRUE. or .FALSE. .....ccccoiioiiiiiieeceeete ettt et ees GOSKEF
Vectors of Random Variates from Continuous Distributions

Normal diSTIIDULION ......eeiiiiiiiiiiii ettt eetae e et e e etee e eeateeeeateeeeareeeetreeeeareeean GOSLAF
Student’s t-AISTIIDULION ......oiiiiiiiiiiiiie et e et e e e et e e e e e et e e e e e s eennreeeeeeennnes GOSLBF
Chi-SqUAre diStrIDULION ......c.ccveeiiiiiiiieieiiecte et et eie et ettt e e eesteetesteebeeteesaesreeseessesseenseesnesseens GOS5LCF
o 15y 103015 () s RO GO5LDF
Beta dISTTIDULION ..eiiiuviiiiiiii ittt e et e e et e e et e e eeaaeeeaaeeeetaeeeeraeeeenseeeeesneeeanes GO5LEF
Gamma dISTTIDULION ......ooviiiiiiiieiii ettt eete e ee e et e e eeteeeeaeeeeeaeeeeeaseeeeaeeeentreeeeeneeeenes GO5LFF
Uniform diStrDULION .....oooviiiiiiieieiie ettt ettt et e et e e eae e e eeaeeeeaeeeeeareeeeaneeeeetseeeeareeeas GOSLGF
Triangular diSTITDULION .....c.cooiieeiieiiieiie ettt ettt e e e e et eebeesseessseessaeesseesaesnseensneanses GO5SLHF
Negative exponential diStriDULION ........ccccieeveriieriiiiierieie ettt sae e steeae e ebesseenaens GO5LJF
Lognormal diStrIDULION .......ocieoiiiiieiieieeiieie ettt ettt te ettt e e ste e e eseentesteesesssesseensessneseens GO5LKF
CauChy AISIIIDULION ....viiiieiiiitieie ettt ettt et e et e bt enteseeesteentesseenseennesaeens GOSLLF
WEIDUIL dISTIIDULION ...oiiiiiiiiiiii ittt eete e et e e et e e eetaeeeeaaeeeeneeeeetseeeenneeeenns GOSLMF
LOgIStIC AISIITDULION ...eiiiiieiiieiie st eiie ettt este et ete et e be e e e b e esb e e sseenseessseasseeesseensseanseensnennses GO5SLNF
VON MiSES AISIITDULION ....eoiiiiiiiiiiiiieiieeee ettt e et e e e e et eeeeeaaaeeeeeeearaeeeeeeenreneens GOSLPF
Exponential mixX diStrIDULION ......cccocieciiiieiiiiieiieieie ettt ettt teeaesaeesaesteesaesenenseens GO5LQF
Single Multivariate from Multivariate Distributions

Multivariate NOrmal diStIIDULION .....oooiiiiiiiiiiiiiiieeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeaans GO5LZF

Vector of variates from Discrete Distributions

Uniform diStriDULION ....oc.oiiiiiiiiiicicce ettt ettt et et eve e s tseeteeeebeesaneennes GO5MAF
GeomMEtriC dIStIIDULION ...ccviiiiiiiiiiiiiciie ettt ettt ettt e e b e este e e b e e s teestreesseessseesseesseessneenses GO5MBF
Negative binomial diStrIDUHON .......cocuiiiiriiiiiiiieieeeer ettt GOBMCF
Logarithmic diStriDULION .......c.ccciiiiieiieiiieie ettt esie et steeiee e esbe e saeesseesasessseessaessseesseennses GO5SMDF
Binomial diStITDULION .....cc.eiiiiiiiiiiii ettt ettt ettt e e e eeteeeaaeeeteeeaveeeaneenns GO5SMJF
POISSON dISIIDULION ...cviiiiiiiiiiiiic ettt ettt ettt s e e eteeeaseetseesbeeseseenseeseneenses GO5MKF
Hypergeometric diStriDULION .........ccccoeeiiiieiiiiieiieiiee ettt ettt et aeseee e ens GOSMLF
Multinomial dISTITDULION ....ccuviieiieiiiiiieiieeiee et et e ste et e b e eteesbeebeesbeestbeesseessseasseesseessseenseensses GOSMRF
User-supplied diStrIDULION ........cccviiiiieiiieriieiieeiteste ettt ettt te bt e st e seaeesseesebeesseessseessnesnseenes GOSMZF

Most of the above routines set up (or have the option to set up) a search table and index in a reference
array; on subsequent calls the routine can generate the random variate from the information in the
reference array.

Variate array from Discrete Distributions with array of parameters
Poisson distribution With VAIrying MEAN .........ccccccevieciiiieniieieieeienieeeesteeieeeesteeneseeesseesneseeens GOSMEF

Generation of Time Series

Univariate ARMA model, NOIMAl €ITOTS .......coiiiiuviiiiiiiiiiee et eeee e e GOSPAF
Vector ARMA model, NOrmal €ITOTS .....c..ooooviiieiiiiieiieecciee et et eaae e GO5PCF
Symmetric GARCH or asymmetric GARCH Type [ ...ccooooiiiiiiiiieeeeeeeeeee e GOSHKF
Asymmetric GARCH TYPE L1 ..ooiiiiiiiieeeeeee ettt ebe e naees GOSHLF
Asymmetric GJR GARCH ....oocoiiiiieee ettt ettt et aesene s e GO5SHMF
EGARCH ...ttt ettt ettt et st e e s bt et e e et et e et e e bt et e entesbeenteeneeneenne GOSHNF

Sampling and Permutation

Random permutation of an inteZer VECIOT ........ccccciiecierierieeienieeeesieeteste e e e see e sreeaeeve e GOSNAF
Random sample from an iNtEEET VECLOT ........ccccevieriierieriienieeientietienieetesteeteeeeesteeseseeenaeenneseeens GO5NBF
Symmetric GARCH or asymmetric GARCH TYpe T ...c.cocoeiiiieiieiieeieeceeeee e GOSHKF
Asymmetric GARCH TYPE L1 ...ooooiiiiiieiieceeeteett ettt ettt sreesebeesbeesbeessbeessaesaseenes GOSHLF
Asymmetric GIR GARCH .......coiiiiieeeeee ettt ettt e et e s ebeesaesnneenes GO5HMF

[NP3546/204] G05.5



Introduction — G05 NAG Fortran Library Manual

EGARCH ... ettt e st e e e ta e e e tb e e e sta e e e abeeeeabaeeearaeeesbeeeeareeeenreeennes GOSHNF
(h) Random Matrices

Random orthogonal MALIIX .........ccceeeiieiiiiiriieiieierie ettt e e beesee b e ebeessseeseeesseessneenses GO5QAF

Random COITelation MAIIIX ..........coooueiiiiiiiiieiieeeeieeeeeeeeeee e e e eeete e e e e eetreeeeeeaaeeeeeeeensneeeeeeesaeeeeeeans GO5QBF
(1) Random Table

RANAOIN TADLE ..ttt e e e e e e e e e e e e e e e e st eeeeeeeeeeeeeeeeaeaasesssreeaneeees GO5QDF

3.3 Programming Advice

Take care when programming calls to those routines in this chapter which are functions. The reason is that
different calls with the same parameters are intended to give different results.

For example, if you wish to assign to Z the difference between two successive random numbers generated
by GOSKAF, beware of writing

Z = GOSKAF(IGEN,ISEED) - GO5KAF(IGEN,ISEED)

It is quite legitimate for a Fortran compiler to compile zero, one or two calls to GOSKAF; if two calls, they
may be in either order (if zero or one calls are compiled, Z would be set to zero). A safe method to
program this would be

X = GOS5SKAF (IGEN,ISEED)
Y = GOS5KAF (IGEN,ISEED)
7 = X-Y

4 Routines Withdrawn or Scheduled for Withdrawal

The following routines have either been withdrawn or superseded. Those routines indicated by * are still
present at Mark 20 but will be omitted at Mark 21; those indicated by ** will be retained in the Library
until at least Mark 22. Advice on replacing calls to those withdrawn since Mark 13 is given in the
document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn Mark of

Routine Withdrawal Replacement Routine(s)
GOSAAF 7 GO5KAF
GO5ABF 7 GO5LGF
GO5ACF 7 GOSLIJF
GO5ADF 7 GO5LAF
GOSAEF 7 GO5SLAF
GOSAFF 7 GO5LKF
GO5AGF 7 GOSLLF
GO5AHF 7 GO5LFF
GO5AJF 7 GO5LFF
GO5AKF 7 GOSLFF
GOSALF 7 GOS5SLEF
GOSAMF 7 GO5SLEF
GO5ANF 7 GOSLCF
GO5APF 7 GO5LBF
GO5AQF 7 GO5SLDF
GOSARF 7 GO5MZF
GOSASF 7 GO5SMJF
GO5ATF 7 GO5SMAF
GO5AUF 7 GO5SMLF
GO5AVF 7 GO5MKF
GOSAWF 7 GO5SMZF
GO5SAZF 7 GO5MZF
GO5BAF 7 GO5KBF
GO5BBF 7 GO5KCF
GOSCAF** 22 GO5KAF
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GO5CBF**
GO5CCF**
GO5CFF**
GO5CGF**
GO5SDAF**
GO5SDBF**
GOSDCF**
GO5SDDF**
GOSDEF**
GO5SDFF**
GO5DGF
GOSDHF**
GOSDJF**
GOSDKEF**
GOSDLF
GO5SDMF
GOSDPF**
GOSDRF**
GOSDYF**
GOSDZF**
GOSEAF**
GOSEBF**
GOSECF**
GOSEDF**
GOSEEF**
GOSEFF**
GOSEGF**
GOSEHF**
GOSEJF**
GOSEWEF**
GOSEXF**
GOSEYF**
GOSEZF**
GOSFAF**
GOSFBF**
GOSFDF**
GOSFEF**
GOSFFF**
GOSFSF**
GO5SGAF**
GO5GBF**
GOSHDF**

22
22
22
22
22
22
22
22
22
22
16
22
22
22
16
16
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22

5 References

GO5KBF
GOSKCF
FO6DFF
FO6DFF
GO5LGF
GOSLIF
GOSLNF
GOSLAF
GOSLKF
GOSLLF
GOSLFF
GOSLCF
GOSLBF
GOSLDF
GOSLEF
GOSLEF
GOSLMF
GOSMEF
GOSMAF
GOSKEF
GOSLZF
GOSMAF
GOSMKF
GOSMJF
GOSMCF
GOSMLF
GOSPAF
GOSNAF
GOSNBF
GOSPAF
GO5MZF
GOSMZF
GOSLZF
GOSLGF
GOSLIF
GOSLAF
GOSLEF
GOSLFF
GOSLPF
GO5QAF
GO5QBF
GO5PCF
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